Detecting Deoxyhemoglobin in Spinal Cord Vasculature of the Experimental Autoimmune Encephalomyelitis Mouse Model of Multiple Sclerosis Using Susceptibility MRI and Hyperoxygenation
نویسندگان
چکیده
Susceptibility-weighted imaging (SWI) detects hypointensities due to iron deposition and deoxyhemoglobin. Previously it was shown that SWI detects hypointensities in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), most of which are due to intravascular deoxyhemoglobin, with a small proportion being due to iron deposition in the central nervous system parenchyma and demyelination. However, animals had to be sacrificed to differentiate these two types of lesions which is impractical for time course studies or for human application. Here, we proposed altering the inspired oxygen concentration during imaging to identify deoxyhemoglobin-based hypointensities in vivo. SWI was performed on lumbar spinal cords of naive control and EAE mice using 30% O2 then 100% O2. Some mice were imaged using 30% O2, 100% O2 and after perfusion. Most SWI-visible hypointensities seen with 30% O2 changed in appearance upon administration of 100% O2, and were not visible after perfusion. That hypointensities changed with hyperoxygenation indicates that they were caused by deoxyhemoglobin. We show that increasing the inspired oxygen concentration identifies deoxyhemoglobin-based hypointensities in vivo. This could be applied in future studies to investigate the contribution of vascular-based hypointensities with SWI in EAE and MS over time.
منابع مشابه
Inhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis
Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...
متن کاملMS14 Down-regulates Lipocalin2 Expression in Spinal Cord Tissue in an Animal Model of Multiple Sclerosis in female C57BL/6
Background: Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis, which is a demyelinating and an inflammatory disease of central nervous system. Recent studies have established that some molecules such as Lipocaline2 (LCN2), which expresses during inflammatory conditions, play an important role in EAE pathogenesis and might involve in its treatment process. ...
متن کاملThe Effect of Carvacrol on the Expression of Genes Hmox-1, iNOS, Nrf2 and NF-ҚB in the Spinal Cord of Experimental Autoimmune Encephalomyelitis Mice
Background: Multiple sclerosis (MS) is one of the most common diseases of the nervous system, characterized by inflammation of the central nervous system and oxidative stress. Carvacrol is a monoterpenoid phenol with antioxidant effects against free radical. The aim of this study was to evaluate the effect of carvacrol on the expression of Hmox-1, iNOS, Nrf2 and NF-ҚB genes in the spinal cord...
متن کاملLiver Damage and Mortality in a Male Lewis Rat of Experimental Autoimmune Encephalomyelitis
Background and Objectives: Multiple sclerosis is an inflammatory disease of the central nervous system. This is due to migration of peripherally activated lymphocytes to central nervous system leading to inflammatory lesions. However, liver has an anti-inflammatory microenvironment. Myelin expression in the liver of transgenic mice suppresses inflammatory lesions within central nervous system. ...
متن کاملEffect of Honey Bee Venom on Lewis Rats with Experimental Allergic Encephalomyelitis, a Model for Multiple Sclerosis
Multiple sclerosis (MS) is a progressive and autoimmune neurodegenerative disease of the central nervous system (CNS). This disease is recognized through symptoms like inflammation, demyelination and the destruction of neurological actions. Experimental allergic encephalomyelitis (EAE) is a widely accepted animal model for MS. EAE is created in animals by injecting the tissue of myelin basic...
متن کامل